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Aim of the project

The aims of the research project are

1/ to produce fs-micro-bunch trains from a long (ps) electron beam using plasma channel ;
2/ to generate tunable coherent THz radiation using the micro-bunch train;

3/ to monitor micro-bunch train frequency using coherent SP/Cherenkov radiation

Project layout

Part 1: Plasma assisted pre-buncher with tunable plasma density to generate micro-
bunch train. Measurement of micro-bunch train periodicity as function of
plasma density using: interferometer, cSPr and cChr.

Part 2: Generation of THz radiation using periodic structures/dielectric material and pre-
bunched electron beam. Demonstration of THz source tunability with change
of the plasma density.



Project: beam requirements

* Beam parameteres:

single particle energy - 50MeV,
total beam charge - 0.5 nC;
beam length - 1.5 mm (5ps);
beam transverse g, - 80 um;

beam longitudinal profile - trapezoidal with
equal (50 um/0.17ps) rise\decay/ slopes\times (i.e.
much shorter as compared with plasma wavelength)



Project: instruments

1/ Experimental Chamber with plasma source and Multiple
viewing ports and motorized in-vacuum translations
(if there is no plasma channel we can use we will make it)

2/ Beam Diagnostics: beam profile monitors; electron beam
spectrometer; streak and IR cameras; cTr foil and Michelson
Interferometer



Project: experiments

a/ wakefield excitation and energy modulation
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b/ image generated by optical CTR with and
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Cameras: change of image brightness
Michelson interferometer: temporal
structure of micro-bunch (S. Antipov et
al., PRL111, 134802 (2013)

¢/ measurement of THz signal at

micro-bunch modulation frequency
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Motivation

1/ Tunable THz source
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2/ Micro-bunch profile monitor



Beam modulation

1/ Direct modulation of bunch using photocathode and fs laser A. Aryshev et al., KEK
+ No loss of electron beam, the micro-bunch repetition frequency can be controlled
and thus frequency of the generated radiation THz
- Laser system can be complicated to generated long train of micro-bunches

2/ Sub-picosecond Bunch Train Production via wakefield energy modulation in dielectric lined
structure - S. Antipov et al., Phys. Rev. Lett. 111, 134802 — Published 25 September 2013

+ relatively short and simple system

- modulation via electron beam cuts => loss of electron beam
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3/ Beam modulation inside plasma channel via transverse instability (AWAKE)
+ short and relatively simple system
+ tuneable via plasma density Defocusing  ccelerating ,  Decelerating (E)
- dealing with plasma —— ' |
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Plasma Beam modulation

Plasma density: n, =1.3 x 10 cm?; &, =300um (1THz)
Electron beam density: n, =2 x 1013 cm3, Gaussian transverse profile and uniform longitudinal
distribution

After 30/1p

After GOAp

After 100Ap

After 150/1p

Simulation of electron beam modulation inside plasma channel using
3D PiC code VSim (Mr. Huibo Zhang, PhD)



Tunability of beam modulation

Simulation of electron beam modulation inside plasma channel using
3D PiC code VSim (Mr. Huibo Zhang, PhD)
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Tunability of beam modulation

Beam density distribution versus plasma density.

(a) Initial beam distribution;
(b)-(d) Beam density distribution after propagating 1.8 cm with plasma density of
1.24x10%%2/m3, 2.84x10%%2/m3and 1.12x10%3/m3 respectively, the corresponding plasma

wavelength is 300 um, 200 pum and 100 pm.



Beam center charge density(C/ms)

Tunability of beam modulation
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The beam charge density on axis along the beam versus propagation distance

(beam energy is 50MeV, charge is 0.5 nC, beam length is 1.5 mm, beam transverse o, is

80 um. The beam longitudinal rise profile is in linear, and the rise-time is 50 um)
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Schematic of plasma cell
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Smith-Purcell radiation

/(1 y observer
A=—|—=—C0s6
mip
Dispersion relation links radiated wavelength and observation angle 0
Long Wavelengths I—‘ " rr‘r‘x( Short Wavelengths )
e bu.r:n'c‘h‘ = | LL‘_I s x.‘x‘a‘x?’“, , N | = z
L’re“t‘
l/\W\M
dl 2Xg . . .
— =Fexp| — 1/ X, is the distance between beam and the periodic
dQ sp 0 structure
2 2/ A, is the electron beam - EM wave coupling parameter
A= BY 3/ further electron beam is away smaller energy transfer to

2m [14+B2y2sin? @sin? ¢ ~ EMwave

For small  and ¢ such that P Ay 10MeV beam should be 0.1mm away
(0p)<<1/y ® 27 togenerate radiation at 10THz



Interaction with micro-bunch train

SP signal spectra from the beams with
No modulation; 1ps; 2ps; 4ps
500um grating
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THz Radiation from a micro-bunch train

All Pasticles(zs) ) 25592 pu

=100

=300

-400 4

=500 -

Emirted ELECTRON CURRENT on CATHODE

9 Micro-bunches were generated

[

Time (ps)

Ephi at LINEZP

Output pulse from the
right port

A

=

Time (ps)

Magn, FFT of Ephi at LINEZP
(1) Evaluate FFT , Time Limits:( 0.120 to 0.220 =ns )

S fth The line spectral width is
pectrum of the output proportional to number N of

pulse from the right port micro-bunches in the train
Ao~ /N
<« ~0.1THz

R \\f,\,.w««/\J AW

0 1.2 1.4 1.6 1.8

Frequency (THz)




Numerical model

Signal measured along full length L of

Signal measured along first part
the radiating aperture

L, of the radiating aperture
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Manufacturing

16j00




Blanc cylindrical waveguide with
Vlasov outputs

Numerical model




Thank you



